Lecture # 27 : Linear Recurrences

نویسندگان

  • Lennart Johnsson
  • Wei Ding
چکیده

1 Recurrences A linear, first order recurrence is a problem of the form x(j) = a(j)x(j − 1) + y(j), x(1) = y(1) (x(0) = 0), 1 · · · · · · · −a(2) 1 · · · · · · · −a(3) 1 · · · · · · · −a(4) 1 · · · · · · · −a(5) 1 · · · · · · · −a(6) 1 · · · · · · · −a(7) 1 · · · · · · · −a(8) 1 Such a bidiagonal system of equations corresponds to the forward solution of a system Ax = y after LU–factorization of A, where A is a tridiagonal system of equations and no pivoting is used. The solution of the upper bidiagonal system of equations, Ux = y corresponds to a backward running recurrence. In matrix form we have ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ u(1, 1) u(1, 2) · · · · · · · u(2, 2) u(2, 3) · · · · · · · u(3, 3) u(3, 4) · · · · · · · u(4, 4) u(4, 5) · · · · · · · u(5, 5) u(5, 6) · · · · · · · u(6, 6) u(6, 7) · · · · · · · u(7, 7) u(7, 8) · · · · · · · u(8, 8) For U in the factorization A = LU of a tridiagonal matrix, both diagonals of U assume arbitrary values. In recurrence form, the upper bidiagonal system of equations can be written as u(j, j)x(j) + u(j, j + 1)x(j + 1) = y

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Five Guidelines for Partition Analysis with Applications to Lecture Hall-type Theorems

Five simple guidelines are proposed to compute the generating function for the nonnegative integer solutions of a system of linear inequalities. In contrast to other approaches, the emphasis is on deriving recurrences. We show how to use the guidelines strategically to solve some nontrivial enumeration problems in the theory of partitions and compositions. This includes a strikingly different a...

متن کامل

MA 106 Linear Algebra lecture notes

8 Elementary operations and the rank of a matrix 25 8.1 Gauss transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8.2 Elementary row operations . . . . . . . . . . . . . . . . . . . . . . . . . 26 8.3 The augmented matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8.4 Row reducing a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8.5 Elem...

متن کامل

Diophantine Equations Related with Linear Binary Recurrences

In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...

متن کامل

Generalizing the combinatorics of binomial coefficients via l-nomials

An l-sequence is defined by an = lan−1 − an−2, with initial conditions a0 = 0, a1 = 1. These l-sequences play a remarkable role in partition theory, allowing l-generalizations of the Lecture Hall Theorem [7, 8] and Euler’s Partition Theorem [8, 26]. These special properties are not shared with other sequences, such as the Fibonacci sequence, defined by second-order linear recurrences. The l-seq...

متن کامل

Advanced Approximation Algorithms ( CMU 18 - 854 B , Spring 2008 ) Lecture 27 : Algorithms for Sparsest Cut Apr 24 , 2008

In lecture 19, we saw an LP relaxation based algorithm to solve the sparsest cut problem with an approximation guarantee of O(logn). In this lecture, we will show that the integrality gap of the LP relaxation is O(logn) and hence this is the best approximation factor one can get via the LP relaxation. We will also start developing an SDP relaxation based algorithm which provides an O( √ log n) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008